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Abstract

An important issue in designing manipulators for dynamic performance is the determination of the acceleration
properties of (some reference-point on) the end-effector of the manipulator. Given the dynamical equations of the
planar two degree-of-freedom manipulator and a set of constraints on the actuator torques and on the rates-of-
changes of the joint variables, we systematically develop (a) the properties of the linear mapping between the
actuator torques and the acceleration of (some reference-point on) the end-effector and (b) the properties of the
(non-linear) quadratic mapping between the rates-of-changes of the joint variables and the acceleration of the
end-effector. We then show how these mappings can be combined to obtain useful acceleration sets - for example
the acceleration set corresponding to any point in the workspace of the manipulator - as well as the properties of
these sets.



1 Introduction
An important issue in designing manipulators for dynamic performance is the determination of the

acceleration properties of (some reference-point on) the end-effector of the manipulator. Given the dynamical
equations of the planar two degree-of-freedom manipulator and a set of constraints on the actuator torques and on
the rates-of-changes of the joint variables, we systematically develop (a) the properties of the linear mapping
between the actuator torques and the acceleration of (some reference-point on) the end-effector and (b) the
properties of the (non-linear) quadratic mapping between the rates-of-changes of the joint variables and the
acceleration of the end-effector. We then show how these mappings can be combined to obtain useful acceleration
sets - for example the acceleration set corresponding to any point in the workspace of the manipulator - as well as
the properties of these sets.

It is useful to briefly mention the work done by others on related problems. Khatib (1, 21 sets up an
optimization problem to improve the acceleration of the end-effector; however the non-linear terms in the dynamical
equations are accounted for in somewhat ad-hoc fashion (by taking certain "high" and "low" values of these terms).
Graettinger and Krogh [3] use semi-infinite programming to obtain the "acceleration-radius" (or "isotropic
acceleration") of a manipulator. In contrast to our approach, both the above-mentioned approaches do not yield the
acceleration sets of the manipulators (defined in section 2) or the properties of these sets or show how the properties
of the sets are related to the geometric and dynamical parameters of the manipulator.

The report is organized as follows: The problem and the variables of interest (in the problem) are defined in
section 2. In the next section, we describe certain decompositions of the manipulator Jacobians which are useful in
deriving certain properties of the linear and (non-linear) quadratic mappings. The properties of the linear mapping
and the quadratic mapping, respectively, are derived in section 4 and 5. In section 6, we show how these maps can
be combined to obtained the acceleration set corresponding to any point in the state space; we then determine the
properties of this set. Similarly, section 7 is devoted to determining the acceleration set (and its properties)
corresponding to any configuration (or "position") in the workspace of the manipulator. In the final section, using
the example of the planar manipulator in our laboratory, we address the computation of the acceleration sets and

their properties.
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2 Definition of the Problem
In this section, using a simple two degree-of-freedom manipulator, we define the problem to understand the

dynamic performance of manipulators.

First, we define manipulator variables in subsection 2.1. In the following subsection, we express the
manipulator acceleration in terms of the variables. In subsection 2.3, we define the problem to characterize the
manipulator performance with end-effector acceleration.

2.1 Definition of the manipulator variables
Consider the serial two degree-of-freedom manipulator with two revolute joints shown in Figure 1. The

manipulator is assumed to be rigid with negligible joint friction.

m2

' x1

Figure 1: A two degree-of-freedom manipulator

Let 1, denote the length of link 1, a, the distance from joint axis 1 to the center of mass of link 1. m, the mass
of link 1 and I the principal moment of inertia of link 1 with respect to its center of mass about an axis
perpendicular to the plane of the motion. Similarly, let I2, a2, m2 and 12 denote the corresponding properties of link
2 (See Figure 1). We call these quantities design variables.

tIc and T2 denote the joint torques, respectively, at joints 1 and 2 and
= [ T r2]T (1)

denotes the vector of joint torque vectors. Let
I TilI S; ci , i/ 1,2 (2)

denote the constraints on the actuator torques at joints I and 2. We define

T = (T I ITil < ri,, i=1,21 (3)
to be the set of allowable torques.

Let (x1 ,x2) denote the coordinates, in a reference frame fixed to the base, of a reference point P on link 2 (See
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Figuie 1) and define
X = [X1 X2] T  (4)

to be the vector of task coordinates in task space. Let q, and q2 denote the generalized coordinates of the
manipulator (See Figure 1), q, being the joint variable at joint 1 and q2 the joint variable at joint 2. Define

q = [q, q2]T (5)

to be the vector of joint variables in joint space. If

qil 5 q iu, i=1,2 (6)
denotes the constraint on joint variable i, then we can define the workspace w of a manipulator as

w = {q I qiL < qi 5 qiu, i=1,2) (7)

Let 4l, and ql2 denote the joint velocities (the rates of change of the joint variables) q, and q2, respectively.
Define

l = [41 42]T (8)
to be the vector of joint velocities. If

l4il S 4/i,, i=1,2 (9)

denotes the constraints on the rates of changes of the joint variables, then we can define

F = (4 I I/i ! 4,, h-1,2) (10)

to be the set of all possible joint velocity vectors.

Define the state vector

u - (q 4j) = [q, q2 41 / 2]T (11)
to represent the dynamic state of a manipulator in the state-space.

The acceleration space or acceleration plane, A, of the manipulator is the set of all possible accelerations,

x [ j, ]T, where 'l and i are real numbers.

More formally we can define

A = ({ I i'E R2) (12)

where R2 is the real Euclidean plane.

2.2 Manipulator acceleration
In this subsection, we derive an expression for the acceleration [4],

(' 2 j"T, (13)

of the reference-point P on the end-effector, since this quantity plays an important role in our analysis.

The relationship between the velocity, x, of point P, and the "joint velocity" vector q is well known:

i = J4 (14)

where J is a (2x2) matrix called the manipulator Jacobian. The detailed expression of Jacobian matrix is shown in
Appendix.
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The dynamic behavior of the two degree-of-freedom manipulator is described by the following equations:

d11 (q2') 1 + d1 2(q2)Wj2 - v(q2)(4 1
2+24 142) + pl(q) = 'rl (15)

d2+(q2)" + 62 - v(q2)( 1
2) + P2(q) ='2 (16)

where the coefficients d,(q2), (ij=1,2). v(q 2), p,(q), (i = 1,2 ) are given in Appendix; note that coefficients dij (ij
=1,2), v(q 2) are functions of only joint variable q2.

Defining

F d,(q 2) d12 (q2 )
D(q2) := 1 (17)

L d2 1(q2) d22 J,

F 0 -v(q 2) 1
V(q2) := 1 (18)

L v(q2) 0 1,
p(q) - [pl(q) p2(q)]T (19)

" '= [W' W2]T (20)

and

l2 .= [1 2 (4/14,42)2-4/12] T  (21)

the dynamic equations (15) and (16) become,

D(q2 )4 + V(q 2){(4} 2 + p(q) = r (22)

The matrix D(q2) is the mass matrix of the manipulator and the vector p(q) denotes the gravitational terms
influencing the dynamic behavior.

A crucial step in the acceleration analysis is the definition of the skew-symmetric matrix V(q2) and the vector

(I) 2 , which allows all the non-linear terms (often called Coriolis and centrifugal) to be written as the product of

V(q2) and [ 4}2. The notation { }2 is used to draw attention to the fact that the elements of the vector ( l}2 are

quadratic in the rates-of- changes 4, and 12, respectively, of the joint variables q, and q2. Note that (4)2 is not

equal to 42=q 1 +q2 .

To obtain the expression for the acceleration if of the point P, we differentiate (14) to obtain

if = J4 + 1q (23)

In Appendix, we show that the second term in (23), J l, can be written in the form

,j4 = -E(q)({) 2  (24)

Combining (23) and (24) we obtain

if = J4 - E(q)() 2. (25)

Defining the quantities,

A(q) = J(q)D-I'(q 2), (26)
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B(q) f -A(q)V(q) - E(q), (27)

c(q) = -A(q)p(q), (28)

it is easy to verify that the expression for the acceleration x" of the point P, obtained by combining equation (22) with
equations (25) through (28), is given by

- kq)r + B{4I 2 + c(q). (29)

Note that A(q), B(q) and c(q) are position dependent, the expressions for the coefficients of which are given
in Appendix.

If the manipulator operates in a (horizontal) plane perpendicular to gravity, then c(q) = 0 and (29) becomes

x" = A(q)'T + B{) 2 . (30)

In this paper, we will study manipulators, moving in horizontal planes, whose acceleration properties are
described by equation (30).

Defining
MC (a, [ a1€ c2,]T .= A(q)'T (31)

,and

cz. = [a- czlI. B(q){412  (32)

equation (30) can be written as

" = o + at (33)

It is convenient to think of c. as the contribution of the torques to the acceleration of the reference point P and

a4 as the contribution of the joint-rates to the acceleration of P, the sum of these two quantities giving us the
acceleration of P as expressed by equation (33).

Equation (31) can be viewed as a linear, position-dependent, mapping between the torque vector x and its
contribution m. to the acceleration of P. Similarly equation (32) can be viewed as a quadratic, position-dependent,

mapping between the joint rate vector q and its contribution aj to the acceleration of P.

2-3 Definition of the problem

The acceleration x of the reference point P of a manipulator, specified by its design variables, constraints on
the torques as given by (2) or (3), constraints on the joint variables as given by (6) or (7) and constraints on the joint
velocities as given by (9) or (10), will be a subset of the acceleration plane A of equation (12). In other words, the

acceleration set for a combination of the above constraints can represent the dynamic performance of manipulators.
To characterize the manipulator dynamic performance, we generate four acceleration sets as follows:

First, we consider the manipulator acceleration set when the joint velocity is zero. Physically, the set

represents the manipulator dynamics when a manipulator starts to move. For the given set T of allowable actuator

torques described by (3), we define the set of all allowable c4. as

$€ = (. I (-3th rTXO. = AT)) (34)
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Next, when the actuator torque vanishes during the operation of a manipulator, the subsequent motion of a
manipulator is also critical in manipulator dynamics. For the given (constraint) set F of allowable rates-of-change,
described by (10). we define the set sh of all allowable a4 as

sj = {a I (34e FXCIx = B(4) 2)} (35)

Finally, when a manipulator is in motion, we consider two acceleration sets in the following. The acceleration

of the reference point P corresponding to a specified state-vector u = 1 qj, q2, l1, ]2 ]T in the state-space will be
denoted by cu. From equation (30), we write

ot, = A(q),c + B(q){i412  (36)
If we define a constant vector k,

k(u) = k(q,4) = [k1, kI]T = ch(q,4) = B(q){[} 2, (37)
then (36) can be written as

au = A(q)T + k(u) (38)

We now define the acceleration set, S., at a specified point u in the state space as follows: For a given set T of

allowable actuator torques described by (3), the acceleration set Su at a point u = [q, 4 ]T in the state - space is
given by

S,(q,4) = (au I (u--(q,4j)), (3VE T)(r1 =A(q)+k(u))) (39)
Thus S. is the image of the set T under the mapping (38).

Finally, at a given position q = [ q1, q2 jT in the workspace of the manipulator, we can define two sets

(SL0 = l 4FSu(q ) (40)

(S) 2 = n4e -su(q,4) (41)
The supremum of (SL)l will be give us the magnitude of the maximum acceleration (in some direction ) of the
reference point P at a given position ( qt, q2 ) of the manipulator.

The infimum of (St) 2 will give us the magnitude of the maximum acceleration of the reference point P
available in all direction at a given position of the manipulator. The infi'num of (SL)2 is called the isotropic
acceleration in Khatib (1] and the local acceleration radius in Kim [5].

Based on the above definitions, the manipulator problem can be written as follows;

1. To characterize four acceleration sets, S, S, , S , S , with their shape and supremum and infimum.

2. To examine the behavior of four acceleration sets S,, Sj, S., SL'

In Section 4 and 5, respectively, we study the properties of the linear mapping described by equation (31) and
the properties of the non-linear mapping described by equation (32). The acceleration properties of P, obtained by
combining these two maps, is discussed in Section 6. In the next section we present a decomposition of the Jacobian
which is helpful in the study of the aforementioned linear and non-linear maps.
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3 Decomposition of the manipulator jacobian
In this section, we derive some little known decompositions of the manipulator Jacobians. These

decompositions facilitate the derivation of the properties of the acceleration properties in Sections 4 and 5. Let v
denote the velocity of point P in a reference frame fixed to the base N, (n, n2) be a set of dextral orthogonal unit
vectors fixed in N, (a, a2) a set of dextral orthogonal unit vectors fixed in A, and (b, b2) a set of dextral
orthogonal vectors fixed in B (see Figure 2).

P

B

q 
2

a 2

n2l

Figure 2: Description of the velocity vector.

We pick n so that it points in the direction of the positive x, axis and pick n2 so that it points in the direction of the
positive x2 axis (Figure 2).

Defining,

F cosqi -sin q 1
R(q) I, (i 1,2) (42)

L sinqj cosq J,
and referring to Figure 2, we obtain,

[a1 a2]T = R(q2) [b, b2 lr (43)
ni n2 ]T= R(qj) i l 2]T. 

(44)

The velocity of the reference point,v, in the reference frame N is given by

V .- 14,a 2  + 12(41-4 2)b2  (45)

From equation (45), we obtain
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v-b1 = 141qa2.b (46)

v.b2 = 1 a.*b2 + 12(411-2). (47)

Note Oat v e b Iand v 9 b2 are simply the b, and b2 measure numbers of the velocity of P in N. Using equations
(42), equations (46) and (47) can be rewritten in the matrix form,

fv-b1l FlIsinq 2  0 1 F411 (48)

Lvob2J Li1cosq 2.-12  12 J L42J.
Defining,

F i/shnq 2  0 1
M(q2) := I (49)

L lcosq2+12  12
and using (5), equation (48) becomes

[vob 1 veb2]T = M(q2 ) q. (50)

Referning again to the geometry of Figure 2, we can write,

[vsal va 2]T = R(q2) [veb1 vob 2]T (51)

[vsn1 vOn2 T = R(Qt) [voal V*a2]T (52)

Equation (51) simply relates the b, and b2 measure numbers of v to the a, and a2 measure numbers of v;
similarly (52) relates the a, and a2 measure numbers of v to the a, and n2 measure numbers of v.

Combining equations (50) through (52) we obtain

[van, von 2] = R(q1) R(q2) M(q2) q (53)

If x is the position vector of P with respect to the fixed point pivot 0, then from equation (4) and the choice of
the directions of nj and n2 (see Figure 2), we can write

x = x1n1  + X2n2  (54)

and,

V = = 'D 1 + "f2  (55)

From (55), the n, and n2 measure numbers of v are given by

(von, v°n2]T = [it j:2T (56)

Combining (53) and (56) we obtain,

x = J(j. 2jT = R(qt) R(q2) M(q2) q (57)

Comparing equations (57) and (14), we obtain
J(q) - R(qt) R(q2) M(q2) (58)

Note that we have decomposed the Jacobian matrix, J(q), into the product of three matrices which depend either on

q, or q2 but not both q, and q2. R(qt) and R(q2) are simple orthogonal matrices and N(q 2) represents the kinematic
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coupling between the two links. In a similar fashion, we can show that the matrix E(q) in equation (24) can be
written as

E(q) = R(qj) R(q 2) N(q2) (59)

where

l cosq 2+12  1'2

N(q 2) := 1 1 (60)
L -/isinq 2  0 J.

Equations (58) and (59) are very useful in deriving the properties of the acceleration maps in section 4 and 5.
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4 Linear mapping

A'

D 772° A

c B'

-20 -r-2o

(a) (b)

Figure 3: Linear Mapping

For the given set T of allowable actuator torques described by (3) and represented by (the interior and the
boundary of) the rectangle ABCD shown in Figure 3-a, we defined the set of all allowable ac in section 2 as

s= = {0 1 (3T rTXa = At)).

In this section, we simply state that ST is the parallelogram A'B'C'D' shown in Figure 3-b and we will derive
three properties of the set ST. The first property determines the "size" of S¢, as characterized by its infimum,
supremum, and its area. The second property expresses the q, invariance of S,, The third property expresses the q2

dependency of Sr

The decomposition, expressed by equation (58), of the manipulator Jacobian is extremely useful in the
derivation of the properties of the set ST. Combining equation (58) and (26) we obtain

A(q) = R(q1) R(q2) M(q2) D-1(q2 ). (61)
Defining a matrix P(q2) as

P(q2) - R(q2) M(q2) D-1(q2 ), (62)
we can rewrite (61) as

A(q) = R(q1 ) P(q2). (63)
Note that we have decomposed A(q) into an orthogonal matrix R(q1) depending only on q, and a matrix P(q2)
depending only on q2. This decomposition facilitates the derivation of the properties below. The (ij) element of A
and P will be denoted, respectively, by aj, and pq.

L. A', B', C', D' denote, respectively, the points in the a. - plane into which the points A(t 1o, 'T2, B('Co,-
T2,), C(-,ro, - d2o), and D(-rto, '2r) map. Then it is easy to verify that the coordinates of A', B', C', D' in the oL, -



plani are given by

A' (a11'r10+ajr2 a2j 1o+a2i22.) (64)

B' (a1 1~1 -a12tU a21T10-a2j2 02) (65)

e (-a11?1O-12'Co -21T1O-,22T2o) (66)

Since (3 1) is a linear mapping, A'B'CD' is a parallelogram; the equations of the sides AB., BC', C'D' and DA are
readily obtained as

1 a,,.,a21 )
-B-a,, - -a2- + (____-h _ =1 0, (a,,-lT.5,,:al~lTo (68)

a12  a22 a12 a22

B I I 1 a (--- a1 ta 12 12 a1 a 1 r1 +ajr, (69)

C'D' 1L I,- -a2 -1_ 1  *a2  0, (-a,,t1 0 -a 2 rUSa :-a1'r1 0 +al2r2) (70)
a,2  a22 a12 a22

DA 11a 12 a2=T0 , (-a1Ta2-,T,-(1
DA -1T-( -2, - -- (71)z~j1~a,, a2 all a2i

*Property 1: The set ST is a parallelogram whose supremum, infumurn and area are given by

sup (S?) = a [ 4(p1 1
2+p21 

2)r10,
2+(p12

2+'p, 2) 2 2p 1 1P12+p2lP 22)r 10. 1. (72)

inf(S,,) =min 1 (Pllpn7p12P21) T1, I(P11P227P1~d 2 ,) (73
'dp12

2 +P22 
2  p I 12+p21 

2

area(s,,)= I 1 iq 2  2M21I4TOU()
('11+mlal2XJ2+m~a-22)+(J2+m2a22sin q)I 1

oProot:

If a('A'), aY(OB'),,(O'C'), a(Od')) denote, respectively, the distances of the vertices A', B', C', and D' from
the origin 0', then the supremum of ST~ is given by

sup (S. = max [(Y(O'A'), a(O'B'), a(O'C), O(OD')] (75)

Since A' and C' are equidistant from the origin 0' and since B' and D' are also equidistant from the origin,(
observation (1) above)

sup (si) = max [a(O'A' a(OB'yj= -iax [a(A'C), a(BD)] (76)
where t(A C') and a(B'D) denote the lengths of the diagonals A'C' and B'D. Combining equations (64) - (67), (63)
and (42), a(AC) and a(B'd) are given by

a(A'C) = V~p 1
2+p21

2)T10
2+ p, 2

2+p, 2 >)T22+2(p1 1pl+p 2 p2Tr1 ,0 ~ (77)

O(B'D') = 4(p1 1
2+p2

2T 1
2+ 2 +p2 2)%2 -2(p 1P12+p2 p22r 1 0IT2 (78)

Therefore,

sup (S.) = max [ ~P1 1
2+P21

2)T1, 2+ P12 
2+p222)T0

2 ±2(plI1 12+p2 1P2 r10r, 1. (79)

If p(O'A'), p(O'B'), p(O'C), p(0'D') denote, respectively, the distances from 0' to A'B'. B'C', C'D', D'A', then
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the infimum of ST is given by

inf(s,) = mm p(OA'), p(O'B'), p(dC'), p(OD')] (80)

Since A'B and C'D' are equidistant from 0' and since B-C' and DA' are also equidistant from 0", (observation (2)
above)

inf(s1) = min p(A'B'), p(B'C')] (81)
The distance p from the origin to a general line ot x + 0 y + X = 0 in the; y - p,,._'e is given by

p _ _I , (82)
4a2 + 02

Substituting appropriate values of y, 03, and X from equations (68) and (69) into equation (82) and using equations
(63) and (42), we obtain

p(AB) = 2 -PI_2= - _ _dt 2)_ (83)
4P12 2+p222 VP122+p222

p(BC,) = I(PUlP22-P2P21) 'r2,1 I detP(q2) T, (84)

P1 2+"'P21 2 Vp I12+P212
Substituting (83) and (84) into (81), we obtain

inf(sx) = min!! detP(q2) x1oIdetP(q2) ttj) (85)
V/p12

2+P222  pI 12+P212

The det P(q2) vanishes at (12= 0, x. Therefore inf(S) = 0 at q2=0, it.

Since the area transformed by the linear mapping A is

f1 f" det(A)drd&, (86)

the area of the parallelogram is obtained as
det(A) [ o--xo][2-- o](87)

= det(R(ql)) det(R(q2)) det(M(q 2)) det(D-l(q1 )) 4%oT%2o (88)

= det(M(q2)) det(D-(q)) 4tr1o, (89)
=~~~ ~ I /2s in q2I4r90

= (1+Mra 12)(2+M2a2 2)+( 2+m2a2
2sin 2q2)m2112  (90)

*Property 2: q! - dependence of S,

The supremum, infimunm, and area of the set ST is independent of the joint variable qI. For two manipulator
positions (q1, q2 ) and (q+O, q2 ),

S=(qt+#,q2 ) - R(*)S(q 1 , 2) (91)

*Proof:

SI is a linear mapped set between actuator torques and the end-effector accelerations. So, property 2 is proved
if the vertices of S1(q,+O, q2) are the simple rotation of S1(ql, q2). Components of vertex A are

a l1lo+a12 U = (cosq1pt -sin qlp21)>To+(cos qlPl2-sin qp22)'C2

= cosq,(pl l l o+p 1 j2 2 -sinq,(p21?T1 +p222o ) (92)

a21to+a22Y.20 = (sin q1p1 1
+cOs q lp2

l )T'?t o (sin qtpt+csqlp22)T2
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= sinq, (p, ,T,+p 2i2*)+Cos q(P 2 1rlo+P2220) (93)

Rewriting equations (92) and (93),

(allclo+a12co a21ro+a2jvz,1TR() fp1 1o+p12',U p2 1' 1o+p2fr jf (94)

Similarly, other vertices of S(ql+4, q2 ) can be shown as a product of R( ) and S1(q,, q2). Therefore,

S,(ql+,4q 2) = R(*)St(q q2)

eProperty 3:q2 - dependence of St

The supremum, infimum, and area of the set S,, depends only on the joint variable q2"

We merely state this property to emphasize that the size of ST depends only on q2 , a property which is to be

expected since, everything else being the same, two positions for which q2 is identical [i.e. (q,, q2) and (q,', q2)] are

equivalent from a kinematic and dynamic standpoint. The property follows obviously from the equations (72)-(74)
which depend only on q2.
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5 Quadratic mapping
For the given (constraint) set F of allowable rates-of-change, described by (1O)and represented by (the interior

and the boundary of) the rectangle EIFIE2F2 shown in Figure 6-a, we defined the set S4 of all allowable in
section 2 as

sj = (j 1 (3qEFXa = B())
As in the previous section, the following questions are important

1. How is sii described ?

2. What is the size of s4 ? Specifically, what is its infimum and supremum ?
3. How does s4 depend on the joint-variables ql and q2.

5.1 Description of Sq
If we define a vector

y "= fyl y2] T "= (41 2 (41+4'2)2-412] T  
(95)

then equation (32) can be expressed as

aiz = B(q) y (96)

Therefore the mapping (32) can be viewed as the product of the quadratic mapping (95) from the q - plane to y -
plane followed by the linear mapping (96) from the y - plane to the ah plane.

The quadratic mapping (95) maps the constraint set F in the q - plane into a set in the y - plane which we denote by
SY. Then the linear mapping (96) maps this set SY into a set in the ahj plane which is simply the set S4 defined in
(35).

We will therefore first obtain the set sy from the constraint set F under the quadratic mapping (95). S1 is then
determined from SY under the linear mapping (96).

5.1.1 The quadratic map and the description of Sy
Formally, we define sy as follows:

SY = {y I (3qEF)(y = )}2 (97)
Using equation (21) we can write (95) explicitly as

Y1 1 (98)

y2 = ( /1+42)2-412 (99)

We now have to determine the mapping of (the interior and the boundary of) the q - plane rectangle E1FE 2F2 into
the y - plane as determined by (98) and (99).

The notation

X, -+ X (100)

will be used to denote the fact that the point X1 in the q - plane maps into the point X in the y - plane, i.e. X is the
image of X1 .
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q .42

F, GF

H 21

E2  F2

Figure 4: an available joint velocity set

From equations (98) and (99) we use that the pair of points X1(4l, 2) and X2(- j, -42) in the q - plane both have the

same image X( 4 ,  ( 1i2)2- l2) in the y- plane, i.e.
XA 1 , 42), X2(-41 -2) -+ X(412,  ( : 2- 2)(101)

Consider the rectangle E1F1E2F2 in Figure 4. A consequence of (101) is that the quadrants OIHIEIG and
01 H2E.G 2 of EFE2F2 both map into the same region of the y - plane; Similarly the quadrants 0GFH2 and
OIG 2F2H, (of E1FE 2F2 ) both map into the same region of the y -plane. Therefore we only need to determine the
region of the y - plane into which the "upper-half' H1E1F 2 (of the rectangle EIFIE2F2) maps. Formally
HI EI F1H2 is described:

F ( 4 I (3 F) (42 Z 0)1 (102)

The required set S. is therefore the image of F' under the quadratic mapping (98) and (99). To determine s. we first
need to establish the following:

1. the image of the points O1, H1, El, G1, F,, and H2 under the mapping (98) and (99).

2. the image of a line

42 = M41  (103)

of slope m passing through the origin O.
IfO, H, E, G, F denote the image of points 01, I-, El, G,, and F1, then from (98) and (99) we can write

01 ( 0, 0 ) -+ 0 ( 0, 0) (104)

H, ( 41, 0 ), H2 ( -4 , 0 -- 21 0 )(105)
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E1 ( 41o, 42, ) -' E( 41, 2 (4]1o+42o)2-41"o2 )  
(106)

F1 ( -41o' 42o ) "  F ( 410 2 (41I-42,j2-41 2)  (107)

GI(0 20 ) -+G (0, 22o ) (108)

Note that the points H1 and H, have the same image as is to be expected from (101). Also, the origin 01 of the -

plane maps into the origin 0 of the y - plane. Using (98) and (99), the line (103) in the y - plane maps into the set of
points

Yl= 10
2  (109)

y2 (41+m4 1)2- 1
2 = 421(m

2 + 2M) (110)

Equations (109) and (110) are the parametric equations of the straight line
Y2 = (m2 + 2m) y1. (111)

Therefore a line passing through the origin and of slope m in the q - plane maps into a line passing through the
origin and of slope ( m2 + 2 m ) in the y - plane.

To obtain the image in the y - plane of the rectangle H1EIF 1H2, it is convenient to divide H1E1FH 2 into four
triangular sections OIHIE P 0 1EIG1, OIG1F1 , and OIFH 2 and separately determine the image set for each of these
sections. The required image set is simply the union of the four image sets.

In order to determine its image set, it is convenient to think of each triangular section as composed of line
segments passing through the origin. This will enable us to readily determine the interior of the image set.

Image set of OIHIE1:

Y2 E
q 2

E

P

1

H 0 H

(a) (b)

Figure 5: Image set of 0 1H1 E1
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Let (Sy)1 denote the image set of the triangle 01 H1E, (see Figure 5-a ). Since a line passing through the

origin 01 in the q plane maps into a line passing through the origin of the y - plane described by equation (103), the
image of the generic line segment OIP of slope m passing through 01, shown in Figure 5-a, will be a line segment
of slope (M2 + 2 m) passing through the origin 0 in the y - plane. We now only need to determine the images of the

end points 01 ( 0. 0) and P1 (411,,42 ) of the OIP 1 . The image of O1, is of course, (see equation (104).), the origin
0 of the y - plane. Let P denote the image of PI. Then the line segment OIP maps into the line segment OP with
one end-point at the origin 0 of the y - plane. All we need to do now is to determine the locus of P as P1 moves
along the line segment HE 1. Using equations (98) and (99), the image of the line segment HIE, described by the
quations

41i = 41,1 ( 0 ! 42 S 42, ) (112)

is the line segment HE, described by the equation

Y1= I02, ( 0 5 Y2 S (410-1-42)2-41 ) "  (113)
Furthermore the images H and E, respectively, of points HI and El are given by equations (105) and (106).

Therefore
1. the locus of P in the y - plane is the line segment HE,

2. the several line OIP of slope m maps into the line OP passing through the origin 0 whose equation is
given by (111) and whose end-point P lies on the line segment and

3. any point on OP I maps into a point on OP.

Therefore the image (Sy)1 of the (interior and boundary of the) OIHIE I is the (interior and boundary of the)
triangle OHE, shown in Figure 5-b whose vertices 0, H, E are given, respectively, by equations (104), (105), and
(106). (0 is of course the origin of the y - plane!).

Image-Set of 0 1 EIG

Y2

q2 E

P

G PG1 l E 1

u1 1' Y
m G

11

(a) (b)

Figure 6: Image set of OEG 1
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Let (S,) 2 denote the image-set of the triangle OIEIG 1, shown in Figure 6-a. Using similar arguments as

above, the generic line segment 01P, of slope m, shown in Figure 6-a map into a line segment of slope ( m2 + 2 in ).
If P denotes the image of P1, then the image (SY) 2 now reduces to obtaining the locus of P as P1 moves along GIE1

in Figure 6-a.

From equations (98) and (99) the image of the line segment GIE 1 described by the equation

2 = 42., ( 0! 1 ! 41.) (114)

is the parabolic segment GE in the y - plane described by the equation,

(Y2 - 472')1 = 442. 2Yl, ( 41o < Y o ). (115)
and shown in Figure 6-b.

Therefore the locus of P in the y - plane is the parabolic segment GE, the coordinates of whose end points G

and E are given by equations (108) and (106).

The image (SY) 2 of the (interior and boundary of the) triangle 0EG1 is the region OEG shown in Figure 6-b,

whose vertices 0, E and G are given, respectively, by equations (104), (106), and (108); EG is a parabolic segment

described by equation (115).

The Image-Set of OG 1 F,

q 2 
Y2

F1 P1 G

(a ) G b

P

0 1

0 11 F

Figure 7: Image set of OEJGJ

Let (S,) 3 denote the image-set of OIGF,.

As before the generic-line 0 1 P1 incise 0GF1 ( see Figure 7-a. ) maps into the line segment OP, where P is

the image of Pt-
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In this case, we have to find the locus of P as P1 moves along GF 1.

Using equations (98) and (99). the image of the line segment GIFI, described by the equation.

42= 2', ( -41o 41 ! 0) (116)
is the parabolic segment GF in the y - plane described by the equations,

(Y2 - 422)2 = 44 2, 2y,, ( o -  < q1
2 )" (117)

Therefore the locus of P in the y - plane is the parabolic segment GF, the coordinates of whose end-points G and F
are given by equations (108) and (107).

The image (Sy) 3 of the (interior and boundary of the) triangular segment 0GF is the region OGF shown in
Figure 7-b, whose vertices 0, G, and F are given, respectively, by equations (104), (108) and (107). Note that (SY) 3

is not convex.

Image-Set of OIFIH2

F1  q2 Y2

H

P1 q 1Y

P

(a) (b) F

Figure 8: Image set of OIFIH2

Let (Sy) 4 denote the image-set of the triangle OIFIH2 in Figure 10-a.

Then the procedure for finding (Sy) 4 of the (interior and boundary of the ) triangle 01F1H2 (shown in Figure
8-a) is the triangle OFH, shown in Figure 8-b, whose vertices 0, F, and H are given by equations (104), (107) and
(105).

Image-Set of H1EFtH2

The image-set Sy of the rectangle HIEFH 2 is given by

Sy =---i=12,3,4 (Sy)i. (118)

Sy is shown in Figure 9.

The image-set Sy of F is the (interior and boundary of the) region OGEF, shown in Figure 11, whose vertices
0, G, E and F are given, respectively, by equations (104), (108), (106) and (107). The boundaries of OGEF are the



20

q
2

E

G

H
1

F

Figure 9: Image set Su

line segments 0G, OF, and FE and the parabolic segment GE whose equations are as follows:

OG Y1 = O,( 0 Y2 ! 4,22) (119)

OF y2 = y 1 ,(0 y !g 1 2 ) (120)

q10
2

FE Y = o10
2, ( 41 -42 o)-4 l0 2 y2 e (41+420)2--41 2 ) (121)

GE (Y2 - 4 2 )2 = 4422YI, ( 0 ! Y1 ! 410 2 ). (122)

Thus OGEF is completely determined. The region OGEF is convex, even though (S.) 3 is non-convex. This is a

consequence of the fact that the non-convex boundary of (Sy) 3 lies in the interior of Sy.

It will be useful in section 7 to approximate the parabolic segment EG by a straight line, consequently the

region OGEF (i.e., S. is approximated by a quadrilateral ). Two approximations, shown in Figure 12, which are of
interest in the sequel are the following:

1. the parabolic segment EG is approximated by the straight line segment EG joining E and G; the
quadrilateral OGEF which is the corresponding approximation to the region OGEF, (Sy), will be called
the inner approximation to SY.

2. the parabolic segment EG is approximated by the line segment El which is tangent to the parabolic
segment at E and which intersects the Y2 - axis at I. The quadrilateral OIEF which is the corresponding
approximation to the region OGEF, (SY). will be called the outer approximation to S,.

The coordinate of I are given by
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q
2

E

G

F

Figure 10: Approximation of Image set

I( O, 2 . (123)

5.1.2 The linear mapping (96) and the determination of S4
From equation (35), the desired image set S4 is the image of Sy under the linear mapping (96). The matrix

B(q) which characterize the linear mapping (96) is given by equation (27). Combining equations (26) and (27) and
using the decompositions of the J(q) and E(q) matrices given, respectively, in equations (58) and (59), we can write
B(q) as

B(q) = R(q1 ) R(q2) ( -M(q 2) D-1(q2 ) V(q2) - N(q 2) }. (124)
Defining the matrix S(q 2),

S(q 2) = R(q2) -M(q 2) D-(q 2) V(q2) - N(q2) ), (125)
we can write B(q) as

B(q) = R(ql) S(q2). (126)
Therefore B(q) can be written as the product of a matrix S which is a function of q2 only and a simple orthogonal
matrix which depends on q, only.

The (i, j) element of the matrices S(q2) and B(q) will be denoted, respectively, by sj and bj.

If 0', G', E', F', and I' denote, respectively, the images in the A4 - plane of 0, G, E, F, and I, then using (96)
we can write the following:
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E(qlo2, (qo+2o9"-o2) --+E'((b1 1-b 12)q1o2+b12 (qlo+q2) 2, (b21-b22)4j 0
2+b22(410+q20 )2) (127)

F(410
2, (2- )2- 1

2 )--.F'((b 2 ,+b12( 1o-?2., (b2l-b2i) 10
2+b22(%,o-q 2) (128)

0, 0 ) -- (0, 0) (129)

G 0, 2o2 2 G ( b, 24 2 , b22j2 2 ) (130)

The images E'F° O'E', (YF', and OG' of the linesegments EF, OE, OF, and OG are line segments described by the
following equations:

1F11I bit b21  2OG' -a7 - +  -2 - (131)

O'F' a d a2= a (133)
(bi 1-bj)qj02+b12(41,--;2o) 2  (2l-b22)4102+ 22(41 -42o)2

o'G -h = 0- (134)
b12 b22"

'Me parabolic segment EG maps into a parabolic segment G E'.

We can therefore write: 'Me image set Sh of the set F" is the ( interior and boundary )of the region E F'OG',
shown in Figure 11, whose vertices E, FV, O', and G' are given, respectively, by equations (127), (128), (130), and
(129). The segments E'F , O'E, OVF, and O'G are given, respectively, by equations (131), (132), (133), and (134).

Thus Si is completely determined.

o(q"2

E
G

F

Figure 11: Image set s4
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5.2 Properties of Sq

In this section, we derive expressions for the supremum and infmunum of Sh.

5.2.1 Furthest vertex of Si

We first show that the furthest vertex of S4 is E'. Inspection of equations (119) through (122) shows that the

furthest vertex of the set Sy is E. Since the set St is the image of Sy under a linear mapping, the furthest vertex of S4

is the image of the furthest vertex, E, of sy. Therefore E is the furthest vertex of S4.

5.22 Supremum of S4

The supremum of Sit is the distance of the furthest vertex E from the origin. Using equation (127), we obtain

sup(S4) =

[(s1 _S1 2)2+(s2l-s 22)2]4+(S12
2+s222](4j+4 20)4+2[s 12(S1 1-s12)+S22(s21-S22)]q 1

2(41 +42o)2. (135)

5.2.3 Infimum of Si

Since the origin 0' ( 0, 0 )is one of the vertices of S4, the infimum of S4 is zero:

inf(Sh) =0 (136)



24

6 The state acceleration set, Su
We defined the acceleration set, S., at a specified point u in the state space as follows:

Definition of S,(q,4): For a given set T of allowable actuator torques described by

T = [,c I ;il 1 :5 , /=1,2),

the acceleration set S. at a point u = [ q, q IT in the state - space is given by

S.(q,4) = (au I (u=(q,4)). (:he T)(fA(q)e+k(n))}
Thus SU is the image of the set T under the mapping (38).

6.1 Determination of Su
Inspection of equation (31) and (38) reveals that

ctu(q,ij, ) = oa(q, ) + k(q,4) (137)

where o.,(q , ~T) e S.(q, t) and ct,(q, 4, ,r) e S,(q, 4, t).

From (137), we see that

cO(q. 4=0, r) = a.,(q, T). (138)
Defining,

IL:- I 1 (139)

and

= au(q, 4--0, 'r) (140)
then

I1 cz(q, r) (141)
and

t= + k(q,4). (142)

If we define a set SU,

S = (b6 I (3ce S )(ot = I o4)), (143)

then S. is the image in the A.,-plane of the set S,, in the A - plane under the identity mapping (139). From (142)

the desired acceleration set s. at a specified point u = [ q, I ]T in the state space is the set obtained by translating sU

by the (constant) displacement vector k ( q, 4 ). This process of generating Su is shown in Figure 12-a, b, and c.

We can write S. in the following equivalent form:

so = (a I (3ca4e so (a = at + k)) (144)

Since ST is a parallelogram A'B'CD', S, and S. are also parallelograms congruent to S. but lying in the A. - plane.
The centroid of the set Su has coordinates ( au, 2 ) as shown in Figure 12-c. Loosely speaking, we can say that
S. is obtained by translating S by (a., ta02 ) from the origin.
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ct2u

C

, Bt" A'u

c&1- -- c1 u O I u
AA

(a) (b) (C)

Figure 12: A state acceleration set

If A", B", C", and D' denote, respectively, the images in the N, - plane of points A', B', C', and D' in the A -

plane (Figure 3-a), then from equations (137) and (64) through (67), we obtain

A(allClo+a12a21Clo+a22 .2,) -- A (kl+a11cj+al2 ,c2o, k2+a21 lo+a22'2) (145)

B(a 1lo-a2oa21c1o-a22ho) -4 B (kl+al '[lo-aj2 2o, k2+a 2 1 ?lo--a22t ,) (146)
C'(al'€o-a2'~o-a1' o-a2 )-+' C"(kl-ajl'Clo-aj2'.2o, /2-a21" lo-a22,t2o)  (147)

D'(--all'clo+aD2k,--a21lo+a22T) -+ D (kj-aj clo+aj2"20 , k2.-a21clo+a22k2o), (148)

S. is the ( interior and boundary ) of the parallelogram A"B"C"D". The sides A"B", B"C", C"D", and D"A" of the
parallelogram are obtained by (137) and equations (68) through (71),

1I a,, a2 , k, k2AB'. --. al- --- a2. + ( )To + = 0 (149)
a12 a22 a12 a2 a12 a22

1 1 .a 12 a-,. (k
BlC -a - _a ---%- + 2o+ = 0 (150)a, aall a2l all a2l

CD". I - I . a11 k (151)
.a2-, - (-( )1)1O + ( = 015)a22. a12 a2 al2  a2

DA". -- a,, - --- a2 - 2o + (. (152)
a,, a2 all a21 a,1 a2i

6.2 Suprenum of Su

The supremum of S. is a measure of the largest acceleration available ( in some direction) at a specified point
in the state-space. In a similar manner to that of S,, the supremum of S. is obtained as the distance of the furthest
vertex of the parallelogram A"B"C"D" from the origin 0" of the A,, plane.

If 1( O"A" ), 1( O"B" ), 1( O"C" ), and I( O"D") denote, respectively, the distances of the vertices A", B", C", and
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D" from the origin 0", then from (145) through (148) we obtain

1(OA") f (kl+al l'l+a 12 02o)2 +(k2+a21 "rl+a22"2,)2  (153)

(0'6") = 4(k1+a11 i..-a12T2 )2+(k 2+a21Z--a22 t2,) 2  (154)

(O"C") = 4(k1-alllol2-a1 2,) 2+(k2--a21'lo1 -aj 2 o 2  (155)

1(0D") = \I(k1-a1  +a,2 2o)z+(k2-a21"lo+a22T2o)2  (156)
The supremurn of S. is given by

sup (S,) = max[ l(O"A), 1(("0), 1((C"), (O"D) 1 (157)

6.3 Infimum of Su
The infunum is the maximum ison-opic acceleration for a certain manipulator position in the workspace.

To obtain the infimum we must consider three cases

X2

x 2

x 2

0 I0 x

(a) (b) and (C) (d)

Figure 13: the relative location of a parallelogram to the origin

1. The origin 0" lies outside the parallelogram A"B"C"D" and 0" does not lie between either pair of
parallel lines (Figure 13-a) comprising the sides of the parallelogram.

2. The origin 0" lies outside the parallelogram A"B"C"D" and 0" lies between A"B" and C"D" (Figure
13-b).

3. The origin 0" lies outside the parallelogram A"B"C"D" and 0" lies between B"C" and D"A" (Figure
13-c).

4. The origin 0" lies inside the parallelogram A"B"C"D" (Figure 13-d).

Using well-known results from analytic geometry, the condition for 0" to lie between the parallel lines AB and
C"D" is obtained from (149) and (151) as

condition 1:
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k a1  a2 ,) ; (158)

a12 a,2 a12 a22

the condition for 0" to lie between the parallel lines B"C" and D"A" is obtained from (150) and (152) as

condition 2:

k i '2  2 a12  a2 2 2
!5 (--_ 2o(159)

a,1 azt all azl

Using the above two conditions, the three cases can easily be identified from the following rules:

e case 1: both conditions I and 2 are false.

* case 2: condition 1 is false and condition 2 is true.

e case 3: condition I is true and condition 2 is false.

* case 4: both conditions 1 and 2 are true.
The infimum for the three cases is obtained as follows:

case 1:(Figure 13-a)

In this case, the infimnum is the distance of the closest vertex of A"B"C"D" from the origin 0". Therefore

inf(Su) = min( l(O"A"), 1(0"B), l(OC"), l(O"O") ] (160)

case 2:(Figure 13-b)

In this case the infimum is the distance from the origin to the nearest side, which is either A"B" or C"D".

let d( A"B") and d( C"D") be, respectively, the distances from O" to sides A"B" and C"D".

d(A"B"),d(C"D) = l(a _ a22-a,2a_21)___:(a2kl-a12k2)1 (161)
Va122+a, 2

In a manner similar to obtaining the infimum of S., the infimum of SU is obtained from equations (161) as

inf(S,) = mini d(A"B"), d(C"D") ] (162)

case 3:(Figure 13-c)

The nearest side is either B"C" or D"A". let d( B"C") and d( D"A" ) be, respectively, the distances from 0" to sides
B"C" and D A".

d(B'C"),d(D"A") = I (al2a21-al la22)X2±(a 2tkl-allk 2) I (163)
Va112+a212

The infimum of S. is obtained from equations (163) as

inf(S,) = min [ d(B"C"), d(D"A") ] (164)

case 4: (Figure 13-d) The infunum is the distance from the origin to the nearest side which could be either

A"B", B"C", C"D", or D"A". These distances were computed for cases 2 and 3 above. Therefore,

inf(S.) = mint d(A"B"), d(BC), d(C"D", d(D"A") 1 (165)
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To summarize the results of this section we can state the following lemma.

Lemma: The acceleration set S. at a point u in the state-space of the manipulator is a parallelogram with
centroid located at the point ( k1, k2 ) defined by equations (37); the supremum of Su is given by (157) and the
infinum of S. is given by one of equations (160), (162), (164), and (165). The supremum and infimum of Su is
independent of the joint angle qt.

7 Local acceleration sets
At a given position q = [q1, q2 ]T in the workspace of the manipulator, we could define two sets in section 2

(SL)! = U46sFSU(qq)

(SD2 = nh a qSAA)

The supremum of (Sdi will be give us the magnitude of the maximum acceleration (in some direction ) of the
reference point P at a given position ( q1, q2 ) of the manipulator.

The infimum of (SD2 will give us the magnitude of the maximum acceleration of the reference point P
available in all direction at a given position of the manipulator. The infirnum of (SL)2 is called the isotropic
acceleration in Khatib [ 1] and the local acceleration radius Kim (5].

7.1 Determination of (SL)l

The generic member SU of the set (SL) 1 was described in section 6 and is shown in Figure 9. As 4 is varied,

Sh is a parallelogram which moves parallel to itself. The locus of the centroid, (k1, k2 ), of the parallelogram as q is

varied is simply the boundary O'GEF" of the set S shown in Figure 11. Therefore we can describe (SL)i as
follows: The local acceleration set (Sd1 is the region swept out by the parallelogram S. as its vertex moves along
the boundary O'G'E'F'. This is shown in Figure 14.

7.2 Supremum of (SL),
The supremum of (SL), is simply the distance of the origin from the furthest point of (Sdl .

To determine the furthest point of (Sdi , all we need to do is to determine

1. the furthest vertex of OG'E'F%,

2. the parallelogram at the furthest vertex, and

3. the furthest vertex of this parallelogram

In section 5, we showed that E' is the furthest vertex of O'G'E'F'. The distances d( O'E ), d( OB'E!), d( O'C'E' ), d(

O'"E ) of the vertices of the parallelogram with centroid E' are given by (153) through (156). The supremum of

(Sd is now readily obtained as

sup(sd1 = max[ d(O'A'), d(O'BE), d(O'C'.), d(O'DE') ]. (166)
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x 2

Figure 14: Determination of (S) 1

x!
2

Figure IS: A local supremum

7.3 Determination of (SL) 2

Using reasoning similar to that in the above section we can describe (SL)2 as follows: The local acceleration
set (SL)2 is the largest region common to all the parallelograms generated by moving the generic parallelogram Su

along the the boundary 0'G E'F'.
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Figure 16: (S) 2 and a local infinum

7.4 Infimum of (S) 2

The infunum of (SL)2 is the maximum distance to the origin from the boundary of (SL)2.

To determine the infunum of (St) 2, the inner and outer approximation of the set S4 in section 5 (and

consequently the boundary O'G'E'F' ) are useful.

The problem of determining the infimum corresponding to an approximating quadrilateral reduces to
examining the parallelograms with centroids at the vertices of the approximating quadrilateral since these represent

the extreme parallelograms.

The procedure for fmding the infium, r, corresponding to an approximate quadrilateral (inner or outer) is as

follows:

1. Construct the parallelogram at each of the four vertices 0', G', E, F or 0', E', F' of the quadrilateral.
Let Pi, (i = 1, 2, 3, 4) denote these four parallelograms.

2. Check if each parallelogram Pi satisfies the two conditions (158) and (159). If all the parallelograms
satisfy these conditions, then an infinmum exists.

3. For each parallelogram, Pi, determine the minimum distance, di, from the origin to the four sides of Pi.

4. Then the infimnum, r, of (SD 2 for the approximation is given by

r = inf(sL)2 = min(dij=1,2,3,4) (167)

Let r, and r2 denote, respectively, the infimum corresponding to the inner approximation OGEF and OIEF.

We now need to distinguish 3 cases.

can 1: r2 - mm (d, i = 1, 2, 3, 4) was obtained from the parallelogram with vertex I. In this case r, and
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r2 are different and

r, < inf(S,) 2 < r2  (168)

* case 2: r, = min (di, i = 1, 2, 3, 4) was obtained from the parallelogram with vertex G. In this case r
and r2 are different and

r1 < inf(S.,)2 < r2  (169)

* case 3: r, is not obtained from the parallelogram with vertex G and r2 is not obtained from the
parallelogram with vertex I. In this case r, and r2 are both obtained from one of the other three vertices
and therefore r1 = r2 and

inf (S)2 = r, = r2  (170)

Therefore we either obtain the inf (SL)2 exactly as in equation (170) or with tight bounds as in equations (168) or
(169).
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8 Example
In this section, we will illustrate the manipulator dynamic properties obtained in section 4 through 7 using a

two degree-of-freedom manipulator. First, we show the state accelerations at the vertices of joint velocity
contribution quadrilateral in section 6. The contribution, o., of actuator torques in section 4 is the local acceleration
set with the zero joint velocity vector. Then, using the state supremum and infimum in section 6, we illustrate the
manipulator state performance. Finally, the local supremum and infimum in section 7 is calculated.

To provide an experimental test-bed, we have built a two degree-of-freedom planar revolute-jointed
manipulator, shown schematically in Figure 1. The design variables of the manipulator consist of

11= 0.303 m 12= 0.254 m
a,= 0.196 m a2= 0.0941 m
mI= 2.26 kg m2= 0.177 kg
11= 0.129 kg m2  12= 2.77x10 - 3 kg m2

The actuator torque set is

T = ( T I friI < 30. Nm, i=1,2),

the joint-velocity set is

V = (4j I Ii ! 1.0 radlsec, i=l,2),

and the workspace is

W = (q I 1. < q2 < i rad).

We choose the manipulator position as q = [0, Vt2 ]T. Our first step is to calculate the elements of matrices
A, B for the manipulator position as follows;

a,1 = 0.000 a12= -58.666 a2 1=1.308 a22=-1.308

b, 1= -0.007 b12= -0.000 b21= -0.247 b22-0.247

Using equation (157), the state supremum at point O' of section 6 are calculated as 1761.73 m/sec2 . Since the
parallelogram of section 4 is the state acceleration at point 0', the supremum of the contribution, a.,, of actuator
torques in section 4 is also 1761.73 m/sec2 .

To obtain the state infunum, two conditions (158) and (159) are tested. Two conditions for our manipulator

are both positive, and equation (165) for case 4 is used to calculate the state infimum for [0, 1.57, 0, 0 IT. The
infimum for [ 0, 1.57, 0, 0 ]r is 39.22 M/sec 2.

The local supremum js the supremum of the state acceleration located at point 0' in Figure 17. From equation

(166), the supremum of position [ 0, 1.57 IT is obtained as 1761.78 fm/sec2. To calculate the local infimum, two sets
of state accelerations should be considered as in section 7. The infimums for the state acceleration sets at point 0',
F, E', G', 1', of section 6 are as follows:

point 0 point F point E point G point I

1761.73 m/sec2 1761.73 m/sec2  1761.78 m/sec2  1761.74 m/sec 2  1761.74 m/sec2

Among these infimums, the minimum is the infimam as in equation (170). So, the local infimum for [ 0, 1.57 IT is

38.23 M/sec 2.
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Figure 17: The acceleration set for a dynamic state 0
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Figure 18: The local acceleration set
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I. Equations of motion for a two-degree-of-freedom planar manipulator
1. Jacobian matrix

The Jacobian matrix J has the following components:
j l =--Ilsin q l-/2sin (ql+q2)

j12 =- 2sin (q1 +q2 )

j21=l1 cos q1+l2cos (q,+q2)

j22 =/2 cOS (q, +q2)

When this relationship is differentiated with respect to the time, we obtain the following equation.

=Jq'+ 4 =Jq-E (} 2

where E is a (2x2) matrix which has the following elements:
e1I =l1 cos q, +/2cos (q, +q2)

el2=/2COS (41l+q2)

e2I=Isinq +12sin (q1+q2)

e22 =12sin (qj+q 2)

2. Dynamic equation

The dynamics of a two-degree-of-freedom planar manipulator is described by the following equation:

D.l'+ V(412 + p=T

D is a (2x2) matrix and the components are as follows:

d1 1=1+mla 1
2+12+m2(a2

2+2a2lcos q2+11
2)

d12=I 2+m2(a2
2+a2!1cos q2)

d1 =d2l

2d22=12+M2a2 .
V is also a (22) matrix and has a following components:

v11= 0

V12- -v

v2 1 - V

v22= 0.

where

v = m2 a2 l1sin q2.
P=[P P2]Tis a vector with the rank 2.

P1=m galsin q,+m2g(/sin q1+a2sin (ql+q 2)]

p2=m2ga2sin (q 1 +q!2)
where g is a gravitational constanL

3. Acceleration equation
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The expression of the acceleration of the end-effector consists of three components as follows:

i -=A t + B{(412 + C

where

A =J D-

B--AV-E
c=-Ap

A is a (2x2) matrix and has the following components:
a, If(J d22 -J12d12)

a ,2f A(-J I Id 12+J 12d 11)

a2 1 =A(J21d22-j22d 12)

a22=A(- 21 d12+ 22d 1)

where

A=[d d22-d122]- 1

B is also a (2>12) matrix and the elements are as follows:

b l---va12-el1

b, 2=vaj I--l2

b22-va--e2

c = (c, c2IT is a vector with the rank 2.

c1=a1 1p1+a, 2p2

c2=-a2IpI+a22P2
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